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Abstract 

Dielectronic recombination (inverse autoionization) 

is treated as a special example of a resonance collision 

process; quantum scattering theory is used to parameterize 

the appropriate cross-section for resonance capture, with 

particular attention to overlapping levels, degeneracy, 

and the complete specification of angular momentum 

structure. 



. -1- 

I. INTRODUCTION 

The dilute plasmas that are found in the solar corona, 

in gaseous nebulae, and in interstellar space differ 

substantially from a plasma in local thermodynamic equilib- 

rium (LTE). In these astrophysical plasmas, populations of 

energy levels and ionization stages cease to be governed by 

the Boltzmann-Saha equation and instead must be determined 

by balancing rates of excitation and ionization against 

countervailing rates of deexcitation and electron capture. 

For a plasma composed entirely of hydrogen (neutral and 

ionized), rate calculations involve the use of hydrogen wave- 

functions, the properties of which are well established. When 

atoms other than hydrogen are considered, application of 

hydrogenic formulas may lead to gross inaccuracies. For 

example, Burgess (1964) pointed out that the electron-capture 

rate is substantially enhanced by the mechanism which Bates 

dubbed "dielectronic recombination". This mechanism, to be 

discussed below, contributes to the capture rate whenever the 

electron and ion can form a doubly-excited quasi-bound state 

(i.e., an autoionizing state). ,,Goldberg (1966),and Goldberg 
Burgess (196419 

and Dupree (1967) have drawn attention to several significant 
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astrophysical consequences of dielectronic recombination, 

and future study of non-LTE phenomena is likely to disclose 

additional consequences. 

Although Burgess' simplified calculations (Burgess 1964, 

1965, 1966) sufficed to indicate the importance of dielec- 

tronic recombination, questions remain concerning details of 

calculation. Recently Trefftz (1967) has discussed refine- 

ments based on the Mott and Massey (1965) treatment of 

electron-scattering resonances, and she has noted the inade- 

quacy of earlier discussions of degeneracy and overlapping 

levels. Tucker and Gould (1966) have estimated dielectronic 

recombination rates, but because of their unjustified degen- 

eracy assumptions, their results cannot be considered correct. 

The present paper derives and examines the rate coeffi- 

cient for dielectronic recombination, using results from the 

quantum theory of resonance collision processes, with partic- 

ular attention to the complete specification of angular 

momentum structure and degeneracy. Several formulas, suscep- 

tible of straightforward computation, are presented. Subse- 

quent papers will give the results of specific computations. 
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11. BASIC FORMULA 

I 
I .  

Electron capture occurs when a free electron of energy 

c encounters an ion in state i and forms an atom in a 

stabilized state s (ordinarily an excited state). As 

Figure 1 illustrates schematically, the final stabilized 

state s can arise either by direct radiative capture, in 

which a single electron changes from a continuum to a bound 

orbital, or through formation of a doubly-excited state d, 

followed by a stabilizing radiative decay to the singly- 

excited bound state s .  This latter process is dielectronic 

recombination. 

The rate per unit volume at which capture occurs into 

state s, both direct capture and dielectronic-recombination, 

is written 

R (S) = 1 Ne N(i) CI (i -, s ) ,  i 

where Ne is the electron density and N(i) the density of 

ions in state i. Equation (2.1) defines the rate coefficient 

a (i + s ) .  
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Similarly, the total rate of capture to all stabilized 

levels is written 

R (tot) = 1 R (s) = c Ne N(i) a (i;tot), 
S 1 

so that the total recombination coefficient is 

The connection between these rate coefficients and 

the quantum theory of collisions is made manifest by intro- 

ducing the cross-section a ( € )  for capture of an electron of 

energy = mv /2 onto an ion state i to yield a stabilized 

state s plus a photon y:  

2 

That is, we view electron capture as a particular example 

of a rearrangement collision, A + a 4 B + b, in which the 

initial system A + a is an ion plus an electron and the 

final system B + b is an atom plus a photon. 
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Then using the electron-velocity distribution dcp(v), a 

Maxwellian distribution in the cases of interest, 

we can write the capture rate as 

(I use atomic units, e = m = t\l = 1.) Thus the recombination 

coefficient is 

a(i 4 s )  = J 

In practice, 

(2 .7 )  

our interest centers on recombination to a 

particular configuration or a particular term (SL). We then 

wish to sum the rate over a set of quantum numbers, say J. 

The required rate then has the form 
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where 

N ( i )  = L N ( i J i ) .  
Ji 

(2.9) 

The r a t e  c o e f f i c i e n t  is  then 

I f ,  as i s  o r d i n a r i l y  assumed, t h e  i n i t i a l  i o n  s ta tes  are  

populated accord ing  t o  t h e i r  s t a t i s t i c a l  weight ,  so  t h a t  

where 

t h e n  t h e  r a t e  coef f ic ien t  is 

( 2 . 1 1 )  

( 2 . 1 2 )  

(2.13) 
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That i s ,  equat ion  ( 2 . 7 )  r equ i r e s  t h e  c ros s - sec t ion  

(2.14) 

where  s 
unspec i f ied  quantum numbers of i n i t i a l  and f i n a l  sys t ems .  

denotes  a summation ( o r  i n t e g r a t i o n )  over a l l  
(is) 

According t o  t h e  quantum theory  of c o l l i s i o n  processes ,  

t h e  c ros s - sec t ion  f o r  capture  of an e l e c t r o n  of energy 

E: = v2/2 r e s u l t i n g  i n  a photon of energy u) = cxk i s  (Shore 

1967) : 

(2.15) 

where e. and rof denote  t h e  i n t r i n s i c  s t a t i s t i c a l  weights  of 
1 e 

t a r g e t  ion  i and e l e c t r o n  p r o j e c t i l e .  

The s c a t t e r i n g  amplitude <sy IT]iE:> comprises two p a r t s .  

The f i r s t  p a r t ,  t h e  dipole-moment ma t r ix  e lement  <s ID ( i c > ,  

expresses  d i r e c t  cap tu re  of an e l e c t r o n  ( i n v e r s e  photoioniza-  

t i o n ) .  T h i s  p a r t  v a r i e s  slowly w i t h  e l e c t r o n  energy c and is  
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most important for small 8. The second part, the sum 1 , 
shows rapid variation with energy E near discrete energies 

d 

E of resonances, and expresses the effect of dielectronic d 

recombination (inverse autoionization). That is, each 

resonance is attributable to the formation of a quasi-bound 

resonance state which subsequently decays by emitting an 

electron or photon. The resonance states d that influence 

electron capture are doubly excited autoionizing states. 

The resonance width T ( d )  is the sum of two parts: an 

auto rad autoionizing width r (d) and a radiative width r (d). 

These partial widths express the respective probabilities 

for decay of state d by autoionization and by radiative 

transitions: 

S S 

(2.15) 

(2.17) 

(2.18) 

Although each individual resonance may make only a slight 

contribution to the cross-section, the cumulative effect of 
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many s u c h  resonances can become q u i t e  l a r g e  when t h e  mean 

e l e c t r o n  energy co inc ides  w i t h  t h e  l i m i t  o f  a Rydberg series 

of  a u t o i o n i z i n g  l e v e l s .  

t h e  d i r e c t  capture amplitude <s ID l i s>,  and so t o  o b t a i n  

f r o m  equat ions  ( 2 . 7 ) ,  ( 2 . 5 ) ,  and (2 .15) ,  t h e  d i e l e c t r o n i c  

recombination ra te :  

Thus it o f t e n  s u f f i c e s  t o  n e g l e c t  

d i  a ( i  -, s )  2 a (i -.+ s )  

T h e  i n t e g r a l  over  c would appear t o  in t roduce  i n t e r f e r e n c e  

effects between over lapping  l e v e l s ,  s u c h  as 

However, as w e  w i l l  see i n  Sec t ion  V I I I ,  s e l e c t i o n  r u l e s  

e l i m i n a t e  i n t e r f e r e n c e  except between l e v e l s  s u c h  t h a t  

( 2 . 2 1 )  
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in which case interference may be neglected. Thus we obtain 

the basic formulas of dielectronic recombination: 

d 
(2 .22 )  

Here% 

parameters A (d -t s )  , A 

as above, a summation over all unspecified quantum numbers of 

initial and final systems. With r and A expressed in atomic 
units, we require the value 

is the number of resonances having identical resonance d 

(d 4 is) and E and denotes, rad auto 
d’ 

Cis) 

1 - 3 2Th2 ” / a  - @p = ( - - )  x L$) = 17 .1200  cm sec (OK)% . 

To illustrate the meaning of the symbol s , consider 
(1s) 

dielectronic recombination onto helium. Formula (2 .22 )  might 

then read 



e 
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Y 2  T 7 

) L 
exp(-c/kT) ( 2 4  +1) ( 2 6 ' + 1 )  

1 

27-r d i  
a ( 1 s  .+ IS, nL) = (j-j-') 

nil l  n'l' 
f 

\ Idn  1 Arad ( n , L l , n ' t '  LSJMtls,nl, LSJM) 

LSJM 
L J  
/u 

(2 .24)  

where n a n d  \J denote  r e s p e c t i v e l y  t h e  propagat ion  d i r e c t i o n  

and t h e  s p i n  p r o j e c t i o n  of t h e  captured e l e c t r o n .  I n  subse- 

quent  s e c t i o n s  w e  s h a l l  consider  a l t e r n a t i v e  s p e c i f i c a t i o n s  

of quantum numbers. 



c 
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111. ALTERNATIVE FORMULAS 

Previous workers have used several alternative forms for 

the basic equations (2.22) - (2.23). If we introduce a 

"capture cross-section" oca' by writing 

then o cap is given by the expression 

Using 0 cap we can write the rate coefficient (2.22) in the 

form used by Burgess: 

L 
d 

Alternatively, if autoionization from d occurs only to 
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t h e  continuum of ion  s t a t e  i, equat ion (2.16) reads  

rauto au to  (d )  = A ( d  + i) .  

W e  can then in t roduce  " p a r t i a l  l i f e t i m e s " ,  def ined  by t h e  

equat ions  

(3 .5)  

( d )  
au to  au to  
T (d)  = l/r (3 .6a )  

(3.6b) 

and w r i t e ,  a s  d i d  Bates  and Dalgarno (1962) : 

rad  auto (d )  1-l . a d i  ( i ; t o t )  = Leyi2 exp(-e/kT) @d [ T  (d)+T 

ge% a ( 3 . 7 )  

H e r e ,  w i t h  I' expressed i n  seconds,  w e  r e q u i r e  t h e  value 

-3 
em (°K)3/2. 

-1 6 / Z  
= 2.0706 x 10 1 

As another  a l t e r n a t i v e ,  w e  can in t roduce  equi l ibr ium 
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* 
populations N , defined by the equation 

We can then write equation (2.22) as 

a di (i + a) = F k  \ Arad(d -, s )  b(d) 
N,N (i) 

d 

and equation (2.8) as 

i d 

where 

( 3 . 9 )  

(3.10) 

(3.li) 

rad With A expressed in atomic units, we require the atomic 

unit of rate, 

-1 
= 4.13413 x 10l6 sec . 

Previous derivations of the rate coefficients balanced 

the rate of capture into state d with the rate of decay from 
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state d, r(d)xN(d), and equated this capture rate with the 

(d)xN (a). The equilibrium rate of autoionization, 

derivation from scattering theory, as done here, may seem 

unnecessarily roundabout compared with a derivation based 

on detailed balancing of radiative decay against the inverse 

of autoionization. I submit a twofold justification: first, 

to clarify the treatment of degeneracy and overlapping 

levels; and second, to provide a prescription for perturba- 
tion-theory calculations of the resonance parameters T, r auto 

rrad 

resonance states on the same footing as the more familiar 

singly-excited states. 

* rauto 

3 

, etc., which removes concern over treating short-lived 
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IV . AUTO ION1 Z I N G  PROBAB I LI TI ES 

I n  t h e  cases of i n t e r e s t  here ,  a u t o i o n i z a t i o n  occurs  

because t h e  i n t e r - e l e c t r o n  Coulomb repu l s ion ,  

mixes bound and continuum configurations (see Fano 1961). 

The autoionizing probability of equation (2.16) is not yet 

completely specified: quantum numbers which do not appear 

explicitly are to be summed over. Because one ordinarily 

employs angular-momentum states to describe free atoms, it 

is convenient to describe the continuum electron in an 

angular momentum representation. (Alternatively, one could 

use distorted plane-waves, with integration over propagation 

directions.) Then the continuum orbital, 

differs from a bound orbital only in the radial factor 

(r). This assumption gives for the autoionizing probabil- 
PE.C 

ities the expression 

L 
e 
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if the radial functions are energy-normalized: 

(4.4) 

To perform computations we must specify a coupling scheme 

for the combined system of ion plus free electron. Because 

we will sum over the collective or intermediate quantum 

numbers, we are at liberty to choose the coupling scheme to 

simplify computations; we might use Jd coupling, and the 

formula 

or LS coupling and the formula 

The preceeding formulas utilize the fact that V is diagonal 

in total angular momentum J. Equation (4.7) simplifies further 

if LS-coupling states are appropriate for d. We then obtain 
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the formula 

As this notation indicates, the autoionizing probability is 

independent of J for LS-coupling states. 

Using standard angular-momentum methods (e.g., Shore and 

Menzel 1967) ,  one can reduce the calculation of matrix- 

elements to the evaluation of 6 - j  symbols and radial integrals. 

As a simple example, consider a two-electron atom, whose 

doubly-excited states can be approximated by pure-configura- 

tion LS-cozpling wavefunctions. The S G ~ C I ~ G R ~ Z ~ ~ ~  probability 

is then given by the formula 
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k k w h e r e  R ( d i r )  and (ex)  a r e  e x p r e s s i b l e  i n  terms of 

g e n e r a l i z e d  S l a t e r  i n t e g r a l s  R t h a t  involve  an energy- 

normalized continuum o r b i t a l :  

k 

H e r e  { & I 1  C ( k )  11 4,’) denotes t h e  reduced  m a t r i x  e l e m e n t  of a 

Racah t e n s o r .  I n  p a r t i c u l a r ,  when to = 0 formula (4 .8)  reads:  

s 3  .c l 2  

\ R ( n 2 t  n,p n o s  CL) 
+ (-I) 24, + 1 

(4.10)  

w h e r e  Max ( t , L )  denotes  t h e  l a r g e r  of 4 and L. The au to ion iz ing  

widths  f o r  LS-coupling s ta tes  a r e  independent of J and a r e  
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given by the formula 

(4.11) 

If .to # 0 the average autoionizing probability is given by 

the formula 

4 ' 4 ,  k 
4 t, k 

(-l)k+k' { O @.(air) Rk'(ex) . - 1  
L, 

kk' (4.12) 

Although LS coupling states may provide reasonable 

approximations for low-lying doubly excited states, they are 

inappropriate for the description of very highly excited 
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configurations n,tl , nC where n becomes very large. For 

example, the splitting between 2p 1004 and 2p 994 is much 

smaller than the splitting between the ion levels 2p and * 
so one is interested in levels such as 2p, - 1004, and 

2p”/.2 ’ 2 

1006. JC-coupling offers a better approximation for 
p% 
such configurations, because one is interested in a sequence 

of states approaching a well-defined value of J . The i 

autoionizing probability in Jt coupling may be written as 

Although this formula shows an explicit dependence on J, K, and 

Jl, the average autoionizing probability is independent of J,, 



-22- 

a u t o  

(2J+1) 
A 
-auto 

(n,dLJl ,  nC + n o t o )  E x ( 2 J + 1 )  A (n ,CIJ ,  , n U ~ l  -. n,C,) JK 

J K  

R' is 

i n  agreement w i t h  equat ion (4.13).  The a u t o i o n i z i n g  wid ths  

e x h i b i t  t h e  J and K dependence shown i n  formula (4 .14 ) :  

(nl4,Jl ,n4[KIJ -., no,L0).  (4.15) 7 Aauto 
rau to  

(n,t ,J , ,  n&[K]J) = 

The average au to ion iz ing  wid th  i s  

(2s+1) (2L+1) = 2-r [ 
2 (2s1+1) (2L1+1) ( 2 C + 1 )  

o r ,  f o r  a two-electron level,  it is  

(2s+1)  (2L+1) 
4(24+1) ( 2 t l + l )  

-auto r ( n l t l ,  n t )  = 2-r 

5'SL 

(4.16) 

(4.17) 
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V. RADIATIVE PROBABILITIES 

The radiative decay rate is the Einstein spontaneous 

transition probability, which may be written 

where {dII Dl1 s) is the reduced matrix element of the dipole 

moment. If we use J t  coupling for the doubly excited state, 

we require the following matrix element: 

It then f o l l o w s  that the radiative decay is given by the 
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formula 

Arad (J,,nC [ K I J  - J,, nI4,l) 

J'K' 

( n t  -, no&,)  i f  J, = J,. 
= j A r a d  ( 5 . 3 )  

For h igh ly  e x c i t e d  s t a t e s ,  t r a n s i t i o n  of t h e  i nne r  core, 

J, -t J,, is more l i k e l y  than  t r a n s i t i o n  of t h e  h igh ly  excited 

o u t e r  e l e c t r o n ,  n4 + n ' t ' ,  and w e  can w r i t e  

I f  t h e  i n n e r  core is a s i n g l e  e l e c t r o n ,  w e  can w r i t e  
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where, according t o  equat ion (5.1) , 

( 5 . 6 )  

I n  t u r n ,  t h e  r a d i a t i v e  width of t h e  doubly excited l e v e l  is 

or , approximately,  

L 

Jo 

rad r ad  = r ( J J  + r ( n t ) ,  

L 
d o  

( 5 . 7 )  

The r a d i a t i v e  wid th  is  independent of t h e  coupl ing scheme and 

of quantum numbers K and J .  
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VI. RATE COEFFICIENTS 

The preceding sections give, for dielectronic recombina- 

tion through JG-coupling resonances, 

the rate coefficient 

r-- 

where 

For recombination onto a one-electron atom, through LS- 

coupling resonances, 

niti, €4,' -, n,G,, nd Ls 4 noto, nt, 
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the rate coefficient is 

where 

The coefficients for recombination onto the ground level or 

ground configuration are 

L 

KJ 
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and 

is 

If 4 ,  = 0, t h e  l a t t e r  formula becomes 

Lc 

“1 

L 
LS 
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The total rate coefficient for recombination onto the ground 

configuration may be written 

exp ( - 1.44?/T) 
TY2 

di a (n,.t,;tot) = 4.141 x 10 

n,J, 

N where T is expressed in degrees Kelvin, v is the wavenumber 

-I (in cm ) of the n o d o  4 n,kl transition, and 

(6.12) 

These formulas also apply to more complex atoms, with the 

replacement 

n1C1 S l L l  and 4(2C1+1) 2(2Si+l) (2L1+1) .  
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When recombination occurs onto an s level, formula (6.12) 

must be replaced by 

LS 

Formula (6.11) is similar to the general formula given b 

(6.13) 

Burgess, which may be written approximately as 

(6.14a) 

The Burgess Formula reqUires 

(6.14b) 

Future computational studies of b(nld1,n.t) will establish the 

range of validity for this equality; several obvious inconsis- 

tencies (concerning recombination onto 4, = 0 and onto excited 

states) are noted below. 
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For t h e  lowest- lying doubly-exci ted l e v e l s ,  au to ioniza-  

t i o n  is f a r  more probable  t h a n  competing modes of r a d i a t i v e  

decay: t h e  resonance s t a t e  d ,  once formed, promptly y i e l d s  a 

free e l e c t r o n  and an ion .  Thus t h e  au to ion iz ing  l e v e l s  which  

one recognizes  i n  o p t i c a l  s p e c t r a  have widths  t h a t  g r e a t l y  

exceed t h e i r  r a d i a t i v e  w i d t h s .  ( I t  i s  t h i s  p rope r ty  t h a t  

makes t h e  broad au to ion iz ing  l i n e s  so conspicuous.)  T h i s  

balance of p r o b a b i l i t i e s  reverses  f o r  very h ighly  e x c i t e d  

s t a t e s ;  s t a t e  d then  decays w i t h  g r e a t e s t  l i k e l i h o o d  through 
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photon emission, usually resulting in a stabilized state s. 

If the autoionizing width greatly exceeds the radiative width, 

formula (6.12) becomes 

Not , however, th 

L- 
nR L 

n 

t formula (6.13) gives 

(6.15) 

00 b(L,Cfl) 
2 4  3 ( 2 L+ 1) b ( n, p , nC) z- 

nC nlLS 

- - 3  2. 1 (2C+1) 11+&6~~] = 2l 3 (n2+&). 

nk n 

(6.16) 

Thus the recombination rate onto an s electron is roughly 2 

the recombination rate onto an Lo # 0 electron, because the 

parity selection rule permits autoionization only in 

accordance with the rule 

nlP, nd IS nos, SL Ls if L = t+l or L = 6-1. 

Approximations (6.15) and (6.16) hold only if 
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(6.17) 

This c o n d i t i o n  f a i l s  when 4, grows s u f f i c i e n t l y  l a r g e  ( t y p i c a l l y  

4, > 7 ) .  As n grows large, t h e  a u t o i o n i z i n g  wid th  d iminishes  

as ( n  ) , where n is  t h e  e f f e c t i v e  quantum number corre- 

sponding t o  n. Thus f o r  s u f f i c i e n t l y  large n or .L, w e  o b t a i n  

* -3 * 

(6.18) 

For l a r g e  va lues  of n ,  only a f e w  va lues  o f  Z, need be con- 

s i d e r e d ,  and w e  f i n d  

(6.19) 

a u t o  
Because of  t h e  s t r o n g  dependence of A ( c l , n4  -. ziJ E & ' )  

on 4, w e  can o b t a i n  a good approximation t o  t h e  r a t e  c o e f f i c i e n t  

by us ing  average a u t o i o n i z a t i o n  rates and w i d t h s .  W e  t he reby  

o b t a i n  t h e  f o r m u l a s  

(6.20) 
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For recombination to a one-electron ion, the use of average 

widths eliminates any reference to the coupling scheme. 

Formula (6.21) is basically the formula used by Burgess 

(1964, 1965, 1966). Formula (6.21) does not apply when 

4 ,  = 0; that case requires the substitution 

di 
To obtain the rate coefficient c1 

recombination onto an excited ion configuration, 

(nidi + n,d,,n) for 

we multiply 

formula (6.11) by the fraction of autoionization that proceeds 

into the n.C continuum: i i  

The formula is 

c 
L (6.22) 
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The preceeding remarks sugges t  t h a t  a formula s u c h  a s  

d i  rad  
a ( n o  4 n o , n )  = 1 exp(-e/kT) A ( n o  -, n,) 

x n2 

u s e d  i n  a prev ious  paper (Tucker  and Gould 1966), must be 

a p p l i e d  w i t h  cau t ion .  

(6.23) 
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VII. CONFIGURATION MIXING 

Pure-configuration wavefunctions, though adequate for 

some purposes, often give a poor description of actual 

wavefunctions, and one must then introduce appropriate 

mixing of configurations. 

series in helium are attributable, in a first approximation 

(Fano and Cooper 1965), to the resonance states 

AS an example, ~ P , O  autoionizing 

i r  7 

Such mixing of configurations with the same sets of principal 

quantum numbers is a natural consequence of the Z-l expansion 

approach to nonrelativistic atomic structure (Layzer 1959). 

However, if n is sufficiently large, the configuration 

mixing caused by the Coulomb interaction is less significant 

than the spin-orbit interaction of the unexcited electron. 

In the above example, when the configuration splitting is 

appreciably less than the level splitting 2p1 - 2 - 2p3/a ' 
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the resonance states can be expected to tend toward JC 

coupling states, $(2pj, nd [K] J): 

For singly ionized beryllium, this occurs for n b 30. For the 

sodium sequence, 6(3pj, nd [K] J), JC coupling should occur 

for n b 15. Because the bulk of dielectronic recombination 

occurs for 10 4 n 4 200, the neglect of configuration mixing 

with the use of JC coupling may not introduce serious errors, 

even for helium and the light elements. 
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V I I I .  OVERLAPPING RESONANCES 

The d e r i v a t i o n  of equat ions ( 2 . 1 5 )  and (2.16) from 

equat ion ( 2 . 1 2 )  assumes t h a t  overlapping resonances do no t  

i n t e r f e r e .  To see why t h i s  is  so, cons ider  t h e  express ion  

c .,. 

a. 

L e t  us i n t roduce  J d  coupl ing s t a t e s ,  so t h a t  formula (8.1) 

reads  

W e  then u s e  t h e  r e s u l t  

2 
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to write 

{J,,n,f, [Kd] JdMdlVIJ.,cC" [ K " ]  JdMd) 

c+E(J.) 1 -E(J1,nlU [K'] Jd)+i*I'(Jl,n't' [ K ' ]  Jd) 

K,Ji M, * 
X (J1 I ,nd [Kd] JdMdlV\Ji,CG" [K"] JdMd } 

c+E(J.)-E(J,',~'.L' 1 [ K ' ]  Jd)+i+I'(J,',n'd' [K'] Jd) 

Integration over energy then gives 

(8.5) 

where, for typographical convenience, cx denotes n4, [Kd] J ~ .  

We see here that the only significant contribution comes from 

the cases where the splitting E(J,) - E(J, ' )  of the - ion 
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levels is much less than the widths: the overlapping doubly 

excited states contribute independently to the recombination 

coefficient. Similarly, if E(J1) and E(J, I )  lie close 

together, our interest centers on recombination onto a term, 

L, S: summation over J, and J1' then again eliminates inter- 

ference. As a result of these selection rules, we can write 

[de T(J.s 4 Jo,n.C) = I{JoII DII J 1 N 2  

(2J,+1) 1 

JL 

This is the result used in writing equations (2.15) and (2.16) 

bote that J < J I ~  VI1 v J > l a  = (2J+1) ~{J~VIJ > 1 2 ] .  
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Figure 1. Schematic illustration of electron capture from 

continuum c to doubly excited state d (bold arrow), 

followed by stabilizing radiative transition to 

singly excited state s (thin arrow). wavy line 

shows direct capture. 
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